MCP Server Development Guide
This protocol streamlines MCP server development with Bwat, enabling you to build powerful extensions that connect AI assistants to external systems and services.
🚀 Share your creations: Once developed, submit servers to the Bwat MCP Marketplace for community access.
Understanding MCP Servers
MCP servers empower AI assistants like Bwat to:
- Integrate with external APIs and services
- Access real-time data streams
- Control applications and local systems
- Perform actions beyond text-based interactions
These servers bridge the gap between AI capabilities and practical system integrations.
Development Protocol
The core development process uses a structured .bwatrules configuration file placed in your MCP working directory (/Users/your-name/Documents/Bwat/MCP).
The .bwatrules File
This configuration file:
- Activates Bwat's specialized MCP development mode
- Enforces development best practices
- Guides through planning, implementation, and testing
- Implements safety checks and validation
Complete protocol template:
# MCP Server Development Protocol  
 
⚠️ IMPORTANT: TEST ALL COMPONENTS BEFORE FINALIZING ⚠️  
 
## Phase 1: Planning  
 
- Define the problem being solved  
- Identify required APIs/services  
- Determine authentication needs:  
  □ API keys  
  □ OAuth flows  
  □ Other credentials  
 
## Phase 2: Implementation  
 
1. Project Setup  
 
   - JavaScript/Node.js environments:  
     ```bash  
     npx @modelcontextprotocol/create-server my-server  
     cd my-server  
     npm install  - Python environments:
pip install mcp # Recommended alternative: uv add "mcp[cli]"
- 
Core Development - Implement using MCP SDK
- Add comprehensive logging:
- TypeScript:
console.error("[Setup] Initializing server...")
- Python:
import logging logging.error('[API] Request to endpoint')
 
- TypeScript:
- Include type definitions
- Implement error handling
- Add rate limiting if required
 
- 
Configuration - Handle credential management
- Update MCP settings:
- TypeScript projects:
{ "mcpServers": { "my-server": { "command": "node", "args": ["path/to/server.js"] } } }
- Python projects:
mcp install server.py -v API_KEY=key
 
- TypeScript projects:
 
Phase 3: Testing
REQUIRED BEFORE COMPLETION:
□ All tools tested with valid inputs
□ Output formats verified
□ User confirmation received
Completion Checklist
❗ Final verification:
□ Comprehensive testing completed
□ All outputs properly formatted
□ Documentation finalized
## Getting Started
### 1. Initialize Your Project
Create a `.bwatrules` file in your MCP directory using the protocol above. This configures Bwat's development behavior for your project.
### 2. Define Your Server
Begin with a clear description of your server's purpose:
```plaintext
Building an MCP server for WeatherAPI integration that provides:  
- Current weather conditions  
- Forecast data  
- Historical weather patterns  
- Severe weather alerts  3. Development Workflow
Bwat guides you through:
- Planning Phase: Design architecture and API integration
- Implementation Phase: Code development and configuration
- Testing Phase: Rigorous validation of all components
4. Provide API Documentation
Share relevant API documentation early:
WeatherAPI documentation:  
[Paste API endpoints, authentication details, and response formats]  Development Modes
Planning Mode
Collaborative design phase covering:
- Problem scope definition
- API selection
- Authentication strategy
- Data flow design
Implementation Mode
Active development phase handling:
- Project scaffolding
- Core functionality implementation
- Configuration management
- Comprehensive testing
Implementation Best Practices
Robust Logging
Implement multi-level logging:
// Initialization logging  
console.error("[Init] Starting weather server...")  
 
// API interaction tracking  
console.error(`[WeatherAPI] Fetching data for ${location}`)  
 
// Error handling  
console.error("[Error] API request failed:", error.message)  Type Safety
Enforce strong typing:
interface WeatherData {
  location: string
  temperature: number
  conditions: string
  forecast: ForecastPeriod[]
}
 
function validateLocation(location: string) {
  if (!location.match(/^[A-Za-z\s,]+$/)) {
    throw new Error("Invalid location format")
  }
}Performance Optimization
Implement intelligent caching:
const CACHE_TTL = {
  CURRENT_WEATHER: 60 * 15, // 15 minutes
  FORECAST: 60 * 60, // 1 hour
  HISTORICAL: 60 * 60 * 24 // 24 hours
}
 
function getCachedWeather(location: string) {
  const cacheKey = `weather-${location}`
  return cache.get(cacheKey) || fetchFreshData(location)
}Error Handling
Graceful error recovery:
try {
  const data = await fetchWeather(location)
  return formatWeatherResponse(data)
} catch (error) {
  console.error("[WeatherError]", error)
  return {
    error: "Unable to retrieve weather data",
    details: error.message,
    retrySuggestion: true
  }
}Testing Methodology
- Unit Testing: Validate individual components
- Integration Testing: Verify API interactions
- End-to-End Testing: Test complete user flows
Example test cases:
// Test current weather retrieval
test("Returns valid weather data for known location", async () => {
  const response = await getWeather("New York")
  expect(response).toHaveProperty("temperature")
  expect(response).toHaveProperty("conditions")
})
 
// Test error handling
test("Handles invalid location errors", async () => {
  await expect(getWeather("Invalid$Location"))
    .rejects.toThrow("Invalid location format")
})Deployment Process
- Finalize all testing
- Prepare documentation:
- Setup instructions
- Configuration requirements
- Usage examples
 
- Submit to Bwat MCP Marketplace
Additional Resources
This guide provides the complete framework for developing robust MCP servers that extend Bwat's capabilities while maintaining security and reliability standards.