MCP Server Development Guide
This protocol streamlines MCP server development with Bwat, enabling you to build powerful extensions that connect AI assistants to external systems and services.
🚀 Share your creations: Once developed, submit servers to the Bwat MCP Marketplace for community access.
Understanding MCP Servers
MCP servers empower AI assistants like Bwat to:
- Integrate with external APIs and services
- Access real-time data streams
- Control applications and local systems
- Perform actions beyond text-based interactions
These servers bridge the gap between AI capabilities and practical system integrations.
Development Protocol
The core development process uses a structured .bwatrules
configuration file placed in your MCP working directory (/Users/your-name/Documents/Bwat/MCP
).
The .bwatrules File
This configuration file:
- Activates Bwat's specialized MCP development mode
- Enforces development best practices
- Guides through planning, implementation, and testing
- Implements safety checks and validation
Complete protocol template:
# MCP Server Development Protocol
⚠️ IMPORTANT: TEST ALL COMPONENTS BEFORE FINALIZING ⚠️
## Phase 1: Planning
- Define the problem being solved
- Identify required APIs/services
- Determine authentication needs:
□ API keys
□ OAuth flows
□ Other credentials
## Phase 2: Implementation
1. Project Setup
- JavaScript/Node.js environments:
```bash
npx @modelcontextprotocol/create-server my-server
cd my-server
npm install
- Python environments:
pip install mcp # Recommended alternative: uv add "mcp[cli]"
-
Core Development
- Implement using MCP SDK
- Add comprehensive logging:
- TypeScript:
console.error("[Setup] Initializing server...")
- Python:
import logging logging.error('[API] Request to endpoint')
- TypeScript:
- Include type definitions
- Implement error handling
- Add rate limiting if required
-
Configuration
- Handle credential management
- Update MCP settings:
- TypeScript projects:
{ "mcpServers": { "my-server": { "command": "node", "args": ["path/to/server.js"] } } }
- Python projects:
mcp install server.py -v API_KEY=key
- TypeScript projects:
Phase 3: Testing
REQUIRED BEFORE COMPLETION:
□ All tools tested with valid inputs
□ Output formats verified
□ User confirmation received
Completion Checklist
❗ Final verification:
□ Comprehensive testing completed
□ All outputs properly formatted
□ Documentation finalized
## Getting Started
### 1. Initialize Your Project
Create a `.bwatrules` file in your MCP directory using the protocol above. This configures Bwat's development behavior for your project.
### 2. Define Your Server
Begin with a clear description of your server's purpose:
```plaintext
Building an MCP server for WeatherAPI integration that provides:
- Current weather conditions
- Forecast data
- Historical weather patterns
- Severe weather alerts
3. Development Workflow
Bwat guides you through:
- Planning Phase: Design architecture and API integration
- Implementation Phase: Code development and configuration
- Testing Phase: Rigorous validation of all components
4. Provide API Documentation
Share relevant API documentation early:
WeatherAPI documentation:
[Paste API endpoints, authentication details, and response formats]
Development Modes
Planning Mode
Collaborative design phase covering:
- Problem scope definition
- API selection
- Authentication strategy
- Data flow design
Implementation Mode
Active development phase handling:
- Project scaffolding
- Core functionality implementation
- Configuration management
- Comprehensive testing
Implementation Best Practices
Robust Logging
Implement multi-level logging:
// Initialization logging
console.error("[Init] Starting weather server...")
// API interaction tracking
console.error(`[WeatherAPI] Fetching data for ${location}`)
// Error handling
console.error("[Error] API request failed:", error.message)
Type Safety
Enforce strong typing:
interface WeatherData {
location: string
temperature: number
conditions: string
forecast: ForecastPeriod[]
}
function validateLocation(location: string) {
if (!location.match(/^[A-Za-z\s,]+$/)) {
throw new Error("Invalid location format")
}
}
Performance Optimization
Implement intelligent caching:
const CACHE_TTL = {
CURRENT_WEATHER: 60 * 15, // 15 minutes
FORECAST: 60 * 60, // 1 hour
HISTORICAL: 60 * 60 * 24 // 24 hours
}
function getCachedWeather(location: string) {
const cacheKey = `weather-${location}`
return cache.get(cacheKey) || fetchFreshData(location)
}
Error Handling
Graceful error recovery:
try {
const data = await fetchWeather(location)
return formatWeatherResponse(data)
} catch (error) {
console.error("[WeatherError]", error)
return {
error: "Unable to retrieve weather data",
details: error.message,
retrySuggestion: true
}
}
Testing Methodology
- Unit Testing: Validate individual components
- Integration Testing: Verify API interactions
- End-to-End Testing: Test complete user flows
Example test cases:
// Test current weather retrieval
test("Returns valid weather data for known location", async () => {
const response = await getWeather("New York")
expect(response).toHaveProperty("temperature")
expect(response).toHaveProperty("conditions")
})
// Test error handling
test("Handles invalid location errors", async () => {
await expect(getWeather("Invalid$Location"))
.rejects.toThrow("Invalid location format")
})
Deployment Process
- Finalize all testing
- Prepare documentation:
- Setup instructions
- Configuration requirements
- Usage examples
- Submit to Bwat MCP Marketplace
Additional Resources
This guide provides the complete framework for developing robust MCP servers that extend Bwat's capabilities while maintaining security and reliability standards.